Integration of Data Science and Computing into Introductory Statistics

Sayed Mostafa & Tamer Elbayoumi

I. Introduction

Background

- Nolan and Temple Lang's (2010)¹
 paper on "Computing in the
 Statistics Curriculum" led many
 statistics educators to advocate
 integrating computing in statistics
 courses starting with the
 Introductory Statistics (Intro
 Stats) course.
- The need for a computationallyinfused statistics curriculum was further signified by the fastgrowing demands on graduates with computational and data analytical skills who can work as data scientists.
- See the Journal of Statistics & Data Science Education Special Issue on "Integrating computing in the statistics and data science curriculum: Creative structures, novel skills and habits, and ways to teach computational thinking"².

Objectives

We aim to

- introduce an Intro Stats course design that integrates computing as a core component of the course and
- 2. evaluate the effectiveness of such design for
 - enhancing students' statistical gains,
 - boosting students' levels of data science (DS) awareness, aspiration, and readiness, and
 - improving students' overall course performance.

II. Computationally-Infused Intro Stats

III. Methods

- DS awareness, readiness & aspirations survey
- Students completed a DS awareness, readiness, and aspirations survey in Qualtrics (pre-survey and post-survey)
- Statistical learning gains
- Students completed a revised version of the CAOS³
 (Comprehensive Assessment of Outcomes in Statistics) scale [pre-test and post-test]
- Implementation:
- Phase I: 2 treatment sections and 2 control sections
- Phase II: 4 treatment sections and 2 control sections

IV. Key Results

V. Conclusions

Integration of DS tools/knowledge into Intro Stats was associated with

- significant gains in students' levels of DS awareness under both designs
- significant gains in students' levels of readiness for DS under the revised design (phase II) only
- significant drop in students' aspirations of DS under phase I design only
- modest (insignificant) statistical learning gains under both designs

VI. References

- 1. Nolan, D., and Temple Lang, D. (2010). Computing in the statistics curricula. *The American Statistician*, 64, 97–107.
- 2. Horton, N.J. and Hardin, J.S. (2021). Integrating computing in the statistics and data science curriculum: Creative structures, novel skills and habits, and ways to teach computational thinking. *Journal of Statistics and Data Science Education*, 29:sup1 S1-S3.
- 3. Tintle, N., Clar, J., Fischer, K., Chance, B., Cobb, G., Roy, S., Swanson, T. and Vanderstoep, J. (2018). Assessing the Association Between Precourse Metrics of Student Preparation and Student Performance in Introductory Statistics: Results from Early Data on Simulation-Based Inference vs. Nonsimulation-Based Inference. *Journal of Statistics Education*, 26(2), 103-109.

